Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We applied elastic thermobarometry on garnet-bearing migmatites along two transects through the crustal section at Sierra Valle Fértil-La Huerta, Argentina. We performed quartz-in-garnet barometry and zircon-in-garnet thermometry on metapelites from different paleo-depths across the crustal section. Our work recovers entrapment pressures ranging from 240 to 1330 MPa and entrapment temperatures between 691 and 1574 °C. The entrapment conditions are broadly consistent with anticipated pressures and temperatures along the crustal section derived previously using conventional, thermodynamic thermobarometers. The quartz-in-garnet barometer reproduces those conventionally established entrapment conditions when samples only experienced conditions within the alpha-quartz stability field. Raman-derived pressures for samples that experienced beta-quartz reference conditions are commonly much higher than those established by conventional barometry. Samples that preserve compressive (positive) residual pressures best reproduce reference entrapment pressures. Entrapment temperatures show high variability and overestimation of temperature conditions compared to conventional results. These results indicate elastic thermobarometry over- or under-estimates crystallization conditions in rocks crystallized at high temperatures, as is common in the Famatinian Arc deep-crust. We suggest that modeling quartz behavior across the alpha–beta transition may present challenges, as does shape maturation, viscous deformation, and radiation damage in zircon.more » « less
-
null (Ed.)Abstract We have examined the suitability of a quartz-inclusions-in-epidote (qtz-in-ep) mineral barometer to better constrain P-T histories of epidote-bearing lithologies. Theoretical calculations applying an isotropic elastic model suggest that the qtz-in-ep barometer exhibits minimal temperature dependence, and thus, offers the potential to constrain growth conditions of epidote in various geologic environments, including skarn deposits, epidote-bearing granitoids, and metamorphic rocks. To test if the applied equations of state and isotropic elastic model reasonably simulate the elastic evolution of two anisotropic minerals, we measured Raman shifts of the 464 cm–1 band of quartz inclusions relative to that of an unencapsulated quartz standard. We calculated a quartz inclusion pressure (Pincl464) at various temperatures and compared these values with temperature-dependent Pincl predicted by elastic modeling (Pinclmod) at elevated temperatures. Three epidote-bearing samples with reasonably well-constrained P-T histories were also examined: (1) sample HF14C from the Upper Schieferhuelle in the Western Tauern Window, Italy (Pincl464=0.01 GPa); (2) sample LdC-31C from Lago di Cignana, Italy (Pincl464≈0.16 GPa); and (3) sample FT1E from the Frosnitz Tal in the Western Tauern region, Austria (Pincl464=0.57 GPa). Entrapment pressures (Pent464) calculated from Pincl464 determined at various temperatures show nominal differences from Pent calculated from Pinclmod, suggesting that for qtz-in-ep pairs, the calculated Pent does not significantly vary with the temperature of measurement. Furthermore, our calculated Pent464 for a sample from the Upper Schieferhuelle is in agreement with petrographic context and previously established P conditions, and the Pent464 determined for the Frosnitz Tal sample closely approximate previously reported pressures. The Lago di Cignana sample is derived from an epidote vein that is encased in a high-P foliation, and the calculated Pent464 is consistent with early, low-P epidote vein formation that pre-dates high-P metamorphism, or alternatively, late vein formation during exhumation, and confirms that the epidote did not form at or near peak conditions (~2.0 GPa). The results of this study indicate that the qtz-in-ep barometer potentially provides another tool that geoscientists can employ to better constrain P-T conditions in some epidote-bearing environments, where conventional thermobarometric techniques cannot be applied.more » « less
-
Abstract. Retrograde metamorphic rocks provide key insights into the pressure–temperature (P–T) evolution of exhumed material, and resultant P–T constraints have direct implications for the mechanical and thermal conditions of subduction interfaces. However, constraining P–T conditions of retrograde metamorphic rocks has historically been challenging and has resulted in debate about the conditions experienced by these rocks. In this work, we combine elastic thermobarometry with oxygen isotope thermometry to quantify the P–T evolution of retrograde metamorphic rocks of the Cycladic Blueschist Unit (CBU), an exhumed subduction complex exposed on Syros, Greece. We employ quartz-in-garnet and quartz-in-epidote barometry to constrain pressures of garnet and epidote growth near peak subduction conditions and during exhumation, respectively. Oxygen isotope thermometry of quartz and calcite within boudin necks was used to estimate temperatures during exhumation and to refine pressure estimates. Three distinct pressure groups are related to different metamorphic events and fabrics: high-pressure garnet growth at ∼1.4–1.7 GPa between 500–550 ∘C, retrograde epidote growth at ∼1.3–1.5 GPa between 400–500 ∘C, and a second stage of retrograde epidote growth at ∼1.0 GPa and 400 ∘C. These results are consistent with different stages of deformation inferred from field and microstructural observations, recording prograde subduction to blueschist–eclogite facies and subsequent retrogression under blueschist–greenschist facies conditions. Our new results indicate that the CBU experienced cooling during decompression after reaching maximum high-pressure–low-temperature conditions. These P–T conditions and structural observations are consistent with exhumation and cooling within the subduction channel in proximity to the refrigerating subducting plate, prior to Miocene core-complex formation. This study also illustrates the potential of using elastic thermobarometry in combination with structural and microstructural constraints, to better understand the P–T-deformation conditions of retrograde mineral growth in high-pressure–low-temperature (HP/LT) metamorphic terranes.more » « less
-
Abstract Exhumed high‐pressure/low‐temperature (HP/LT) metamorphic rocks provide insights into deep (∼20–70 km) subduction interface dynamics. On Syros Island (Cyclades, Greece), the Cycladic Blueschist Unit preserves blueschist‐to‐eclogite facies oceanic‐ and continental‐affinity rocks that record the structural and thermal evolution linked to Eocene subduction. Despite decades of research, the metamorphic and deformation history (P‐T‐D) and timing of subduction and exhumation are matters of ongoing discussion. We suggest that Syros comprises three coherent tectonic slices and that each slice underwent subduction, underplating, and syn‐subduction return flow along similar P‐T trajectories, but at progressively younger times. Subduction and exhumation are distinguished by lineations and ductile fold axis orientations, and are kinematically consistent with previous studies that document top‐to‐the‐S‐SW shear (prograde‐to‐peak subduction), top‐to‐the‐NE shear (blueschist facies exhumation), and then E‐W coaxial stretching (greenschist facies exhumation). Amphibole zonations record cooling during decompression, indicating return flow above a cold slab. Multi‐mineral Rb‐Sr isochrons and compiled metamorphic geochronology show that the three slices record distinct stages of peak subduction (53–52, ∼50, and 45 Ma) that young with structural depth. Retrograde blueschist and greenschist facies fabrics span ∼50–40 and ∼43–20 Ma, respectively, and also young with structural depth. Synthesized data sets support a revised tectonic framework for Syros, involving subduction of structurally distinct coherent slices and simultaneous return flow of previously accreted tectonic slices in the subduction channel shear zone. Distributed, ductile, dominantly coaxial return flow in an Eocene‐Oligocene subduction channel proceeded at rates of ∼1.5–5 mm/yr and accommodated ∼80% of the total exhumation of this HP/LT complex.more » « less
An official website of the United States government
